The indeterminate Gene Encodes a Zinc Finger Protein and Regulates a Leaf-Generated Signal Required for the Transition to Flowering in Maize
نویسندگان
چکیده
Flowering in plants is a consequence of the transition of the shoot apex from vegetative to reproductive growth in response to environmental and internal signals. The indeterminate1 gene (id1) controls the transition to flowering in maize. We show by cloning the id1 gene that it encodes a protein with zinc finger motifs, suggesting that the id1 gene product functions as a transcriptional regulator of the floral transition. id1 mRNA expression studies and analyses of transposon-induced chimeric plants indicate that id1 acts non-cell-autonomously to regulate the production of a transmissible signal in the leaf that elicits the transformation of the shoot apex to reproductive development. These results provide molecular and genetic data consistent with the florigen hypothesis derived from classical plant physiology studies.
منابع مشابه
The Effect of 8-Weeks of Low-Intensity Swimming Training on Promyelocytic Leukemia Zinc Finger Protein and Spermatid Transition Nuclear Protein Gene Expression in Azoospermic Rats Model
Aims: One of the causes of infertility in men is the azoospermia disease, which is attributed to the lack of sperm in each sperm. The primary function of spermatogenesis is the maintenance, proliferation, and differentiation of spermatogonial cells. Thus, the present study aimed to investigate the changes in Promyelocytic Leukemia Zinc Finger (PLZF) and spermatid Transition Nuclear Protein (TNP...
متن کاملThe maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties.
The INDETERMINATE protein, ID1, plays a key role in regulating the transition to flowering in maize. ID1 is the founding member of a plant-specific zinc finger protein family that is defined by a highly conserved amino sequence called the ID domain. The ID domain includes a cluster of three different types of zinc fingers separated from a fourth C2H2 finger by a long spacer; ID1 is distinct fro...
متن کاملRID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice.
Transition from the vegetative phase to reproductive phase is a crucial process in the life cycle of higher plants. Although the molecular mechanisms of flowering regulation have been extensively characterized in a number of plant species, little is known regarding how the transition process initiates. Here, we show that the Rice Indeterminate 1 (RID1) gene acts as the master switch for the tra...
متن کاملThe control of axillary meristem fate in the maize ramosa pathway.
Plant axillary meristems are composed of highly organized, self-renewing stem cells that produce indeterminate branches or terminate in differentiated structures, such as the flowers. These opposite fates, dictated by both genetic and environmental factors, determine interspecific differences in the architecture of plants. The Cys(2)-His(2) zinc-finger transcription factor RAMOSA1 (RA1) regulat...
متن کاملRice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod.
Indeterminate 1 (Id1), a classical flowering gene first reported in 1946, is one of the earliest genes whose expression in leaf tissues affects the floral transition in the shoot meristem. How Id1 is integrated into the flowering process is largely unknown. In this study, we examined the genetic action of the rice (Oryza sativa) ortholog OsId1. In rice, OsId1 is preferentially expressed in youn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 93 شماره
صفحات -
تاریخ انتشار 1998